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Feynman diagrams with the effective action
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‡ Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics,
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Received 14 October 1997

Abstract. A derivation is given of the Feynman rules to be used in the perturbative computation
of the Green functions of a generic quantum many-body theory when the action which is being
perturbed is not necessarily quadratic. Some applications are discussed.

1. Introduction

The Feynman diagrammatic technique has proven quite useful in order to perform and
organize the perturbative solution of quantum many-body theories. The main idea is the
computation of the Green or correlation functions by splitting the actionS into a quadratic
or free partSQ plus a remainder or interacting partSI which is then treated as a perturbation.
From the beginning this technique has been extended to derive exact relations, such as the
Schwinger–Dyson [1–3] equations, or to make resummation of diagrams as that implied in
the effective action approach [4, 5] and its generalizations [6].

Consider now a generalization of the above problem, namely, to solve (i.e. to find the
Green functions of) a theory with action given byS+ δS perturbatively inδS but where the
‘unperturbed’ actionS (assumed to be solved) is not necessarily quadratic in the fields. The
usual answer to this problem is to write the action as a quadratic partSQ plus a perturbation
SI + δS and then to apply the standard Feynman diagrammatic technique. This approach
is, of course, correct but it does not exploit the fact that the unperturbed theoryS is solved,
i.e. its Green functions are known. For instance, the computation of each given order in
δS requires an infinite number of diagrams to all orders inSI . We will refer to this as
the standard expansion. In this paper it is shown how to systematically obtain the Green
functions of the full theory,S + δS, in terms of those of the unperturbed one,S, plus the
vertices provided by the perturbation,δS. Unlike the standard expansion, in powers of
SI + δS, the expansion considered here is a strict perturbation inδS and constitutes the
natural extension of the Feynman diagrammatic technique to unperturbed actions which are
not necessarily quadratic. We shall comment below on the applications of such an approach.

2. Many-body theory background

2.1. Feynman diagrams and standard Feynman rules

In order to state our general result let us recall some well known elements of quantum
many-body theory (see [5]), and in passing, introduce some notation and give some needed
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definitions. Consider an arbitrary quantum many-body system described by variables or
fields φi , that for simplicity in the presentation will be taken as bosonic. As will be clear
below, everything can be generalized to include fermions. Without loss of generality we
can use a single discrete indexi to represent all the necessary labels (deWitt notation). For
example, for a relativistic quantum field theory,i would contain spacetime, Lorentz and
Dirac indices, flavour, kind of particle and so on. Within a functional integral formulation
of the many-body problem, the expectation values of observables, such asA[φ], take the
following form:

〈A[φ]〉 =
∫

exp(S[φ])A[φ] dφ∫
exp(S[φ]) dφ

. (1)

Here the functionS[φ] will be called theaction of the system and is a functional in general.
Note that in some cases〈A[φ]〉 represents the time-ordered vacuum expectation values, in
other cases the canonical ensemble averages, etc. and also the quantityS[φ] may correspond
to different objects in each particular application. In any case, all (bosonic) quantum many-
body systems can be brought to this form and only equation (1) is needed to apply the
Feynman diagrammatic technique. As already noted, this technique corresponds to writing
the action in the formS[φ] = SQ[φ] + SI [φ]:

SQ[φ] = 1
2mijφ

iφj SI [φ] =
∑
n>0

1

n!
gi1...inφ

i1 · · ·φin (2)

where we have assumed that the action is an analytical function of the fields atφi = 0.
Also, a repeated indices convention will be used throughout. The quantitiesgi1...in are the
coupling constants. The matrixmij is nonsingular and otherwise arbitrary, whereas the
combinationmij + gij is completely determined by the action. Thefree propagator, sij , is
defined as the inverse matrix of−mij . The signs in the definitions ofS[φ] and sij have
been chosen so that there are no minus signs in the Feynman rules below. Then-point
Green functionis defined as

Gi1...in = 〈φi1 · · ·φin〉 n > 0. (3)

Let us note that under a nonsingular linear transformation of the fields, and choosing the
action to be a scalar, the coupling constants transform as completely symmetric covariant
tensors and the propagator and the Green functions transform as completely symmetric
contravariant tensors. The tensorial transformation of the Green functions follows from
equation (1), since the constant Jacobian of the transformation cancels among numerator
and denominator.

Perturbation theory consists of computing the Green functions as a Taylor expansion
in the coupling constants. We remark that the corresponding series is often asymptotic,
however, the perturbative expansion is always well defined. By inspection, and recalling the
tensorial transformation properties noted above, it follows that the result of the perturbative
calculation ofGi1···in is a sum of monomials, each of which is a contravariant symmetric
tensor constructed with a number of coupling constants and propagators, with all indices
contracted except(i1 · · · in) times a purely constant factor. For instance,

Gab = · · · + 1

3!
saigijk`s

jmskns`pgmnpqs
qb + · · · . (4)

Each monomial can be represented by aFeynman diagramor graph: eachk-point coupling
constant is represented by a vertex withk prongs, each propagator is represented by an
unoriented line with two ends. The dummy indices correspond to ends attached to vertices
and are calledinternal, the free indices correspond to unattached or external ends and are
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Figure 1. Feynman graph corresponding to the monomial in equation (4).
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Figure 2. (a) A linked disconnected graph.(b) A unlinked graph. The cross represents a
1-point vertex.

the legs of the diagram. The lines connecting two vertices are calledinternal, the others
areexternal. By construction, all prongs of every vertex must be saturated with lines. The
diagram corresponding to the monomial in equation (4) is shown in figure 1.

A graph is connectedif it is connected in the topological sense. A graph islinked
if every part of it is connected to at least one of the legs (i.e. there are no disconnected
0-legs subgraphs). All connected graphs are linked. For instance, the graph in figure 1 is
connected, that in figure 2(a) is disconnected but linked and that in figure 2(b) is unlinked.
To determine completely the value of the graph, it only remains to know the weighting
factor in front of the monomial. As shown in many textbooks [5], the factor is zero if the
diagram is not linked. That is, unlinked graphs are not to be included since they cancel
due to the denominator in equation (1); a result known as Goldstone theorem. For linked
graphs, the factor is given by the inverse of thesymmetry factorof the diagram which
is defined as the order of the symmetry group of the graph. More explicitly, it is the
number of topologically equivalent ways of labelling the graph. For this counting all legs
are distinguishable (due to their external labels) and recall that the lines are unoriented.
Dividing by the symmetry factor ensures that each distinct contribution is counted once and
only once. For instance, in figure 1 there are three equivalent lines, hence the factor 1/3!
in the monomial of equation (4).

Thus, we arrive to the followingFeynman rulesto computeGi1...in in perturbation
theory.

(1) Consider eachn-point linked graph. Label the legs with(i1, . . . , in), and label all
internal ends as well.

(2) Put a factorgj1...jk for eachk-point vertex, and a factorsij for each line. Sum over
all internal indices and divide the result by the symmetry factor of the graph.

(3) Add up the value of all topologically distinct such graphs.
We shall refer to the above as the Feynman rules of the theory ‘SQ+SI ’. There are several
relevant remarks to be made: IfS[φ] is a polynomial of degreeN , only diagrams with
at mostN -point vertices have to be retained. The choicegij = 0 reduces the number of
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diagrams. The 0-point vertex does not appear in any linked graph. Such a term corresponds
to an additive constant in the action and cancels in all expectation values. On the other
hand, the only linked graph contributing to the 0-point Green function is a diagram with no
elements, which naturally takes the value 1.

Let us define theconnected Green functions, Gi1...in
c , as those associated to connected

graphs (although they can be given a nonperturbative definition as well). From the Feynman
rules above, it follows that linked disconnected diagrams factorize into its connected
components, thus the Green functions can be expressed in terms of the connected ones.
For instance

Gi = Gi
c

Gij = Gij
c +Gi

cG
j
c

Gijk = Gijk
c +Gi

cG
jk
c +Gj

cG
ik
c +Gk

cG
ij
c +Gi

cG
j
cG

k
c.

(5)

It will also be convenient to introduce thegenerating functionof the Green functions,
namely,

Z[J ] =
∫

exp(S[φ] + Jφ) dφ (6)

whereJφ stands forJiφi andJi is called theexternal current. By construction,
Z[J ]

Z[0]
= 〈exp(Jφ)〉 =

∑
n>0

1

n!
Gi1...inJi1 . . . Jin (7)

hence the name generating function. The quantityZ[0] is known aspartition function.
Using the replica method [5], it can be shown thatW [J ] = log(Z[J ]) is the generator
of the connected Green functions. It is also shown thatW [0] can be computed, within
perturbation theory, by applying essentially the same Feynman rules given above as the sum
of connected diagrams without legs and the proviso of assigning a value− 1

2tr log(−m/2π)
to the diagram consisting of a single closed line. The partition function is obtained if
nonconnected diagrams are included as well. In this case, it should be noted that the
factorization property holds only up to possible symmetry factors.

2.2. The effective action

To proceed, let us introduce theeffective action, which will be denoted0[φ]. It can be
defined as the Legendre transform of the connected generating function. For definiteness
we put this in the form

0[φ] = min
J
(W [J ] − Jφ) (8)

although in generalS[φ], W [J ], as well as the fields, etc, may be complex and only the
extremal (rather than minimum) property is relevant. For perturbation theory, the key
feature of the effective action is as follows. Recall that a connected graph hasn loops if it
is possible to remove at mostn internal lines so that it remains connected. For an arbitrary
graph, the number of loops is defined as the sum over its connected components.Tree
graphs are those with no loops. For instance the diagram in figure 1 has two loops whereas
that in figure 3 is a tree graph. Then, the effective action coincides with the equivalent
action that at tree level would reproduce the Green functions ofS[φ]. To be more explicit,
let us make an arbitrary splitting of0[φ] into a (nonsingular) quadratic part0Q[φ] plus a
remainder,0I [φ],

0Q[φ] = 1
2m̄ijφ

iφj 0I [φ] =
∑
n>0

1

n!
ḡi1...inφ

i1 · · ·φin (9)
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Figure 3. A tree graph.
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Figure 4. (a) A 1-particle reducible graph.(b) A graph with a tadpole subgraph.

then the Green functions ofS[φ] are recovered by using the Feynman rules associated to
the theory ‘0Q+0I ’ but adding the further prescription of including only tree level graphs.
The building blocks of these tree graphs are theeffective line, s̄ij , defined as the inverse
matrix of−m̄ij , and theeffective (or proper) vertices, ḡi1...in . This property of the effective
action will be proven below. Let us note that0[φ] is completely determined byS[φ], and is
independent of howmij andm̄ij are chosen. In particular, the combinationm̄ij + ḡij is free
of any choice. Of course, the connected Green functions are likewise obtained at tree level
from the theory ‘0Q +0I ’, but including only connected graphs. For ulterior reference, let
us define theeffective currentas ḡi and theself-energyas

6ij = m̄ij + ḡij −mij . (10)

Note that6ij depends not only onS[φ] but also on the choice ofSQ[φ].
A connected graph is1-particle irreducibleif it remains connected after removing any

internal line, and otherwise it is called1-particle reducible. In particular, all connected tree
graphs with more than one vertex are reducible. For instance the graph in figure 1 is 1-
particle irreducible whereas those in figures 3 and 4 are reducible. Toamputatea diagram
(of the theory ‘SQ + SI ’) is to contract each leg with a factor−mij . In the Feynman
rules, this corresponds to not including the propagators of the external legs. Thus the
amputated diagrams are covariant tensors instead of contravariant. Then, it is shown that
the n-point effective vertices are given by the connected 1-particle irreducible amputated
n-point diagrams of the theory ‘SQ + SI ’. (Unlessn = 2. In this case the sum of all such
diagrams with at least one vertex gives the self-energy.)

A graph hastadpoles if it contains a subgraph from which stems a single line. It
follows that all graphs with 1-point vertices have tadpoles. Obviously, when the single line
of the tadpole is internal, the graph is 1-particle reducible (cf figure 4(b)). An important
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Figure 5. Feynman diagrams for the 3- and 4-point connected Green functions in terms of the
proper functions (cf equation (11)). The lighter circles represent the connected functions, the
darker circles represent the irreducible functions.

particular case is that of actions for which〈φi〉 vanishes. This ensures that the effective
current vanishes, i.e.̄gi = 0 and thus all tree graphs of the theory ‘0Q + 0I ’ are free of
tadpoles (since tadpole subgraphs without 1-point vertices require at least one loop). Given
any action,〈φi〉 = 0 can be achieved by a redefinition of the fieldφi by a constant shift,
or else by a readjustment of the original currentgi , so this is usually a convenient choice.
A further simplification can be achieved if0Q[φ] is chosen as the full quadratic part of the
effective action, so that̄gij vanishes. Under these two choices, each Green function requires
only a finite number of tree graphs of the theory ‘0Q + 0I ’. Also, s̄ij coincides with the
full connected propagator,Gij

c , since a single effective line is the only possible diagram for
it. Up to 4-point functions, it is found

Gi
c = 0

Gij
c = s̄ij

Gijk
c = s̄ia s̄jbs̄kcḡabc

Gijk`
c = s̄ia s̄jbs̄kcs̄`d ḡabcd + s̄ia s̄jbḡabcs̄cd ḡdef s̄ek s̄f ` + s̄ia s̄kbḡabcs̄cd ḡdef s̄ej s̄f `

+s̄ia s̄`bḡabcs̄cd ḡdef s̄ek s̄fj .

(11)

The corresponding diagrams are depicted in figure 5. Previous considerations imply that in
the absence of tadpoles,Gij

c = −((m+6)−1)ij .

3. Perturbation theory on nonquadratic actions

3.1. Statement of the problem and main result

All the previous statements are well known in the literature. Consider now the action
S[φ] + δS[φ], where

δS[φ] =
∑
n>0

1

n!
δgi1...inφ

i1 . . . φin (12)

defines theperturbative vertices, δgi1...in . The above-defined standard expansion to compute
the full Green functions corresponds to the Feynman rules associated to the theory
‘SQ + (SI + δS)’, i.e. with gi1...in + δgi1...in as new vertices. Equivalently, one can use an
obvious generalization of the Feynman rules, using one kind of line,sij , and two kinds of
vertices,gi1...in andδgi1...in , which should be considered as distinguishable. As an alternative,
we seek instead a diagrammatic calculation in terms of0[φ] and δS[φ], that is, usings̄ij
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as line andḡi1...in andδgi1...in as vertices. The question of which new Feynman rules are to
be used with these building blocks is answered by the following

Theorem.The Green functions associated toS[φ]+δS[φ] follow from applying the Feynman
rules of the theory ‘0Q+(0I+δS)’ plus the further prescription of removing the graphs that
contain ‘unperturbed loops’, i.e. loops constructed entirely from effective elements without
any perturbative vertexδgi1...in .

This constitutes the basic result of this paper. The same statement holds in the presence
of fermions. The proof is given below. We remark that the previous result does not depend
on particular choices, such asḡi = ḡij = 0. As a consistency check of the rules, we note
that whenδS vanishes only tree level graphs of the theory ‘0Q + 0I ’ remain, which is
indeed the correct result. On the other hand, whenS[φ] is quadratic, it coincides with its
effective action (up to an irrelevant constant) and therefore there are no unperturbed loops
to begin with. Thus, in this case our rules reduce to the ordinary ones. In this sense, the
new rules given here are the general ones whereas the usual rules correspond only to the
particular case of perturbing a quadratic action.

3.2. Illustration of the new Feynman rules

To illustrate our rules, let us compute the corrections to the effective current and the self-
energy,δḡi andδ6ij , induced by a perturbation at most quadratic in the fields, that is,

δS[φ] = δgiφi + 1
2δgijφ

iφj (13)

and at first order in the perturbation. To simplify the result, we will choose a vanishingḡij .
On the other hand,SQ[φ] will be kept fixed andδS[φ] will be included in the interacting
part of the action, soδ6ij = δm̄ij .

Applying our rules, it follows thatδḡi is given by the sum of 1-point diagrams of the
theory ‘0Q + (0I + δS)’ with either oneδgi or oneδgij vertex and which are connected,
amputated, 1-particle irreducible and contain no unperturbed loops. Likewise,δ6ij is given
by 2-point diagrams. It is immediate thatδgi can only appear in 0-loop graphs andδgij can
only appear in 0- or 1-loop graphs, since further loops would necessarily be unperturbed.
The following result is thus found

δḡi = δgi + 1
2δgabs̄

aj s̄bkḡjki

δ6ij = δgij + δgabs̄ak s̄b`ḡkni ḡ`rj s̄nr + 1
2δgabs̄

ak s̄b`ḡk`ij .
(14)

The graphs corresponding to the r.h.s. are shown in figure 6. There, the small full circles
represent the perturbative vertices, the lines with light grey circles represent the effective
line and the vertices with dark grey circles are the effective vertices. The meaning of this
equation is, as usual, that upon expansion of the skeleton graphs in the r.h.s., every ordinary
Feynman graph (i.e. those of the theory ‘SQ + (SI + δS)’) appears only once, and with the
correct weight. In other words, the new graphs are a resummation of the old ones.

Let us take advantage of the above example to make several remarks. First, in order
to use our rules, alln-point effective vertices have to be considered, in principle. In the
example of figure 6, only the 3-point proper vertex is needed for the first-order perturbation
of the effective current and only the 3- and 4-point proper vertices are needed for the self-
energy. Second, after the choiceḡij = 0, the corrections to any proper vertex requires
only a finite number of diagrams, for any given order in each of the perturbation vertices
δgi1...in . Finally, skeleton graphs with unperturbed loops should not be included. Consider,
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Figure 6. Diagrammatic representation of equations (14). The small full dot represents
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Figure 7. (a) A redundant graph. Meaning of lines and vertices as in figures 5 and 6. (b) The
associated unperturbed graph to (a).

for example, the graph in figure 7(a). This graph contains an unperturbed loop. If its
unperturbed loop is contracted to a single circle, this graph becomes the third 2-point graph
in figure 6, therefore it is intuitively clear that it is redundant. In fact, the ordinary graphs
obtained by expanding the circles in figure 7(a) in terms of ‘SQ+SI ’ are already accounted
for by the expansion of the third 2-point graph in figure 6.

For a complicated diagram of the theory ‘0Q+(0I +δS)’, the cleanest way to check for
unperturbed loops is to construct itsassociated unperturbed graph. This is the graph of the
theory ‘0Q + 0I ’ which is obtained after deleting all perturbation vertices, so that the ends
previously attached to such vertices become external legs in the new graph. Algebraically
this means to remove theδgi1...in factors so that the involved indices become external
(uncontracted) indices. The number of unperturbed loops of the old (perturbed) graph
coincides the number of loops of the associated unperturbed graph. The associated graph
to that in figure 7(a) is depicted in figure 7(b).

4. Some applications

Of course, the success of the standard Feynman-diagrammatic technique is based on the
fact that quadratic actions, unlike nonquadratic ones, can be easily and fully solved.
Nevertheless, even when the theoryS[φ] is not fully solved, our expansion can be useful.
First, it helps in organizing the calculation. Indeed, in the standard expansion the same 1-, 2-
, . . . , n-point unperturbed Green functions are computed over and over, as subgraphs, instead
of only once. Secondly, and related, because the perturbative expansion inSI [φ] must be
truncated, in the standard expansion one is in general using different approximations for the
same Green functions ofS[φ] in different subgraphs. As a consequence, some known exact
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properties (such as symmetries, experimental values of masses or coupling constants, etc) of
the Green functions ofS[φ] can be violated by the standard calculation. In contrast, in the
expansion proposed here, the Green functions ofS[φ] are taken as an input and hence one
can make approximations to them (not necessarily perturbative) to enforce their known exact
properties. As an example consider the Casimir effect. The physical effect of the conductors
is to change the photon boundary conditions. This in turn corresponds to modify the free
photon propagator [7], i.e. to add a quadratic perturbation to the Lagrangian of quantum
electrodynamics (QED). Therefore our expansion applies. The advantage of using it is that
one can first write down rigorous relations (perturbative inδS but nonperturbative from the
point of view of QED) and, in a second step, the required QED propagators and vertex
functions can be approximated (either perturbatively or by some other approach) in a way
that is consistent with the experimentally known mass, charge and magnetic moment of the
electron, for instance. Another example would be chiral perturbation theory: given some
approximation to massless quantum chromodynamics (QCD), the corrections induced by the
finite current quark masses can be incorporated using our scheme as a quadratic perturbation.
Other examples would be the corrections induced by a nonvanishing temperature or density,
both modifying the propagator.

4.1. Derivation of diagrammatic identities

Another type of application comes in the derivation of diagrammatic identities. We
can illustrate this point with some Schwinger–Dyson equations [1–3]. Letεi be field
independent. Then, noting that the actionS[φ+ ε] has0[φ+ ε] as its effective action, and
for infinitesimalεi , it follows that the perturbationδS[φ] = εi∂iS[φ] yields a corresponding
correctionδ0[φ] = εi∂i0[φ] in the effective action. Therefore for this variation we can
write:

δḡi = δ∂i0[0] = εj ∂i∂j0[0] = εj (m+6)ij
δ6ij = δ∂i∂j0[0] = εk∂i∂j ∂k0[0] = εkḡijk.

(15)

Let us particularize to a theory with a 3-point bare vertex, thenδS[φ] is at most a quadratic
perturbation with verticesδgj = εi(mij + gij ) andδgjk = εigijk. Now we can immediately
apply equations (14) to obtain the well known Schwinger–Dyson equations

6ij = gij + 1
2giabs̄

a`s̄br ḡ`rj

ḡcij = gcij + gcabs̄ak s̄b`ḡkni ḡ`rj s̄nr + 1
2gcabs̄

ak s̄b`ḡk`ij .
(16)

The corresponding diagrams are depicted in figure 8.
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Figure 8. Two Schwinger–Dyson equations for a cubic action.
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4.2. Effective Lagrangians and the double-counting problem

There are instances in which we do not have (or is not practical to use) the underlying
unperturbed action and we are provided directly, through the experiment, with the Green
functions. In these cases it is necessary to know which Feynman rules to use with the
exact Green function ofS. Consider for instance the propagation of particles in nuclear
matter. This is usually described by means of so-called effective Lagrangians involving
the nucleon field and other relevant degrees of freedom (mesons, resonances, photons, etc).
These Lagrangians are adjusted to reproduce at tree level the experimental masses and
coupling constants. (Of course, they have to be supplemented with form factors for the
vertices, widths for the resonances, etc, to give a realistic description, [8].) Thus they are a
phenomenological approximation to the effective action rather than to the underlying bare
actionS. In other words, nature has solved the unperturbed theory (in this case the vacuum
theory) for us and one can make experimental statements on the exact (nonperturbative)
Green functions. The effect of the nuclear medium is accounted for by means of a Pauli
blocking correction to the nucleon propagator in the vacuum, namely,

G(p) = (p0− ε(p)+ iη)−1+ 2iπn(p)δ(p0− ε(p)) = G0(p)+ δG(p) (17)

whereG0(p) andG(p) stand for the nucleon propagator at vacuum and at finite density,
respectively,n(p) is the Fermi sea occupation number andε(p) is the nucleon kinetic
energy. In the present case, the vacuum theory is the unperturbed one whereas the Pauli
blocking correction is a 2-point perturbation to the action and our expansion takes the form
of a density expansion.

The use of an effective Lagrangian, instead of a more fundamental one, allows us to
perform calculations in terms of physical quantities and this makes the phenomenological
interpretation more direct. However, the use of the standard Feynman rules is not really
justified since they apply to the action and not to the effective action, to which the effective
Lagrangian is an approximation. A manifestation of this problem comes in the form of
double-counting of vacuum contributions, which has to be carefully avoided. This is
already obvious in the simplest cases. Consider, for instance, the nucleon self-energy
coming from exchange of virtual pions, with the corresponding Feynman graph depicted
in figure 9(a). This graph gives a nonvanishing contribution even at zero density. Such
vacuum contribution is spurious since it is already accounted for in the physical mass of
the nucleon. The standard procedure in this simple case is to subtract the same graph at
zero density in order to keep the true self-energy. This is equivalent to droppingG0(p) in
the internal nucleon propagator and only keeping the Pauli blocking correctionδG(p). In
more complicated cases simple overall subtraction does not suffice, as is well known from
renormalization theory; there can be similar spurious contributions in subgraphs even if the
graph vanishes at zero density. An example is shown in the photon self-energy graph of
figure 9(b). The vertex correction subgraphs contain a purely vacuum contribution that is

γ
N

N

π

π

(a) (b)

Figure 9. Nucleon (a) and photon (b) self-energy diagrams.
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already accounted for in the effectiveγNN vertex. Although such contributions vanish
if the exchanged pion is static, they do not in general. As is clear from our theorem, the
spurious contributions are avoided by not allowing vacuum loops in the graphs. That is, for
each standard graph consider all the graphs obtained by substituting eachG(p) by either
G0(p) or δG(p) and dropping all graphs with any purely vacuum loop. We emphasize
that, strictly speaking, the full propagator and the full proper vertices of the vacuum theory
have to be used to construct the diagrams. In each particular application it must be decided
whether a certain effective Lagrangian (plus form factors, widths, etc) is a sufficiently good
approximation to the effective action.

4.3. Derivation of low density theorems

A related application of our rules comes from deriving low density theorems. For instance,
consider the propagation of pions in nuclear matter and in particular the pionic self-energy
at lowest order in an expansion on the nuclear density. To this end one can use the first-
order correction to the self-energy as given in equation (14), when the labelsi, j refer to
pions and the 2-point perturbation is the Pauli blocking correction for the nucleons. Thus,
the labelsa, b, k, ` (cf second line of figure 6) necessarily refer to nucleons, whereasn, r

can be arbitrary baryons (B). In this case, the first 2-point diagram in figure 6 vanishes
since i, j are pionic labels which do not have Pauli blocking. On the other hand, as the
nuclear density goes to zero, higher-order diagrams (i.e. with more than one full dot, not
present in figure 6) are suppressed and the second and third 2-point diagrams are the leading
contributions to the pion self-energy. TheπNB andππNN proper vertices in these two
graphs combine to yield theπN T -matrix, as is clear by cutting the corresponding graphs
with the full dots. (Note that the Dirac delta in the Pauli blocking term places the nucleons
on mass shell.) We thus arrive at the following low-density theorem [9]: at lowest order
in a density expansion in nuclear matter, the pion optical potential is given by the nuclear
density times theπN forward scattering amplitude. This result holds independently of the
detailed pion–nucleon interaction and regardless of the existence of other kind of particles
as well since they are accounted for by theT -matrix.

4.4. Application to nonperturbative renormalization in Quantum Field Theory

Let us consider a further application, this time to the problem of renormalization in quantum
field theory (QFT). To be specific we consider the problem of ultraviolet divergences. To
first order inδS, our rules can be written as

δ0[φ] = 〈δS〉φ (18)

where〈A〉φ means the expectation value ofA[φ] in the presence of an external currentJ
tuned to yieldφ as the expectation value of the field. This formula is most simply derived
directly from the definitions give above. (In passing, let us note that this formula defines
a group of transformations in the space of actions, i.e. unlike standard perturbation theory,
it preserves its form at any point in that space.) We can consider a family of actions,
taking the generalized coupling constants as parameters, and integrate the above first-order
evolution equation taking, for example a quadratic action as a starting point. Perturbation
theory corresponds to a Taylor expansion solution of this equation.

To use this idea in QFT, note that our rules directly apply to any pair of regularized
bare actionsS andS + δS. Bare means thatS andS + δS are the true actions that yield
the expectation values in the most naive sense and regularized means that the cut-off is
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in place so that everything is finite and well defined. As is well known, a parametric
family of actions is said to be renormalizable if the parameters can be given a suitable
dependence on the cut-off so that all expectation values remain finite in the limit of large
cut-off (and the final action is nontrivial, i.e. nonquadratic). In this case the effective action
also has a finite limit. Since there is no reason to use the same cut-off forS and δS, we
can effectively take the infinite cut off limit in0 keeping that ofδS finite. (For instance,
we can regularize the actions by introducing some nonlocality in the vertices and taking
the local limit at different rates for both actions.) So, when using equation (18), we will
find diagrams with renormalized effective lines and vertices from0 and bare regularized
vertices fromδS. Becauseδ0 is also finite as the cut-off is removed, it follows that the
divergences introduced byδS should cancel with those introduced by the loops. This allows
us to restate the renormalizability of a family of actions as the problem of showing that:
(1) assuming a given asymptotic behaviour for0 at large momenta, the parameters inδS
can be given a suitable dependence on the cut-off so thatδ0 remains finite; (2) the assumed
asymptotic behaviour is consistent with the initial condition (e.g. a free theory); and (3) this
asymptotic behaviour is preserved by the evolution equation. This would be an alternative
to the usual forest-formula analysis which would not depend on perturbation theory. If
the above programme were successfully carried out (the guessing of the correct asymptotic
behaviour being the most difficult part) it would allow us to write a renormalized version
of the evolution equation (18) and no further renormalizations would be needed. (Related
ideas regarding evolution equations exist in the context of the low-momenta expansion,
[10], or to study finite-temperature QFT [11].)

To give an (extremely simplified) illustration of these ideas, let us consider the family
of theories with Euclidean action

S[φ,ψ ] =
∫

d4x( 1
2(∂φ)

2+ 1
2m

2φ2+ 1
2(∂ψ)

2+ 1
2M

2ψ2+ 1
2gφψ

2+ hφ + c). (19)

Hereφ(x) andψ(x) are bosonic fields in four dimensions. Further, we will only consider
the approximation of noφ-propagators inside the loops. This approximation, which treats
the field φ at a quasiclassical level, is often made in the literature. As it turns out,
the corresponding evolution equation is consistent, that is, the r.h.s. of equation (18) is
still an exact differential after truncation. In order to evolve the theory we will consider
variations ing, and also inc, h andm2, since these latter parameters require a (g-dependent)
renormalization. (There are no field,ψ-mass or coupling constant renormalization in this
approximation.) That is

δS[φ,ψ ] =
∫

d4x( 1
2δm

2φ2+ 1
2δgφψ

2+ δhφ + δc). (20)

The graphs with zero and oneφ-leg are divergent and clearly they are renormalized by
δc and δh, so we concentrate on the remaining divergent graph, namely, that with two
φ-legs. Noting that in this quasiclassical approximationg coincides with the full effective
coupling constant andSψ(q) = (q2 +M2)−1 coincides with the the full propagator ofψ ,
an application of the rules gives (cf figure 10)

δ6φ(k) = δm2− δgg
∫

d4q

(2π)4
θ(32− q2)Sψ(q)Sψ(k − q) (21)

where3 is a sharp ultraviolet cut-off.
Let us denote the cut-off integral byI (k2,32). This integral diverges as 1

(4π)2 log(32)

for large3 and fixedk andM. Henceδ6φ is guaranteed to remain finite if, for large3,
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δΣφ(k) = +
φ

ψ

φ φ φ

Figure 10. Diagrammatic representation of equation (21).

δm2 is taken in the form

δm2 = δm2
R + δgg

1

(4π)2
log(32/µ2) (22)

whereµ is an arbitrary scale (cut-off independent), andδm2
R is an arbitrary variation. Thus,

the evolution equation for large cut-off can be written in finite form, that is, as a renormalized
evolution equation, as follows

δ6φ(k) = δm2
R − δggIR(k2, µ2) (23)

where

IR(k
2, µ2) = lim

3→∞

(
I (k2,32)− 1

(4π)2
log(32/µ2)

)
. (24)

Here δg and δm2
R are independent and arbitrary ultraviolet finite variations. The physics

remains constant if a different choice ofµ is compensated for by a corresponding change in
δm2

R so thatδm2, and hence the bare regularized action, is unchanged. The essential point
has been thatδm2 could be chosen3 dependent butk2 independent. As mentioned, this
example is too simple since it hardly differs from standard perturbation theory. The study
of the general case (beyond quasiclassical approximations) with this or other actions seems
very interesting from the point of view of renormalization theory.

5. Proof of the theorem

In order to prove the theorem it will be convenient to change the notation: we will denote
the unperturbed action byS0[φ] and its effective action by00[φ]. The generating function
of the full perturbed system is

Z[J ] =
∫

exp(S0[φ] + δS[φ] + Jφ) dφ. (25)

By the definition of the effective action, the connected generating function of the unperturbed
theory is

W0[J ] = max
φ
(00[φ] + Jφ) (26)

thus, up to a constant (J -independent) factor, we can write

exp(W0[J ]) = lim
h̄→0

[ ∫
exp(h̄−1(00[φ] + Jφ)) dφ

]h̄
. (27)

h̄ is merely a book-keeping parameter which is often used to organize the loop expansion [12,
5]. Theh̄th power above can be produced by means of the replica method [5]. To this end
we introduce a number ¯h of replicas of the original field, which will be distinguished by a
new labelk. Thus, the previous equation can be rewritten as

exp(W0[J ]) = lim
h̄→0

∫
exp

(
h̄−1

∑
k

(γ0[φk] + jφk)
)∏

k

dφk. (28)
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On the other hand, the identity (up to a constant)
∫

exp(Jφ) dφ = δ[J ], whereδ[J ] stands
for a Dirac delta, allows us to write the reciprocal relation of equation (6), namely

exp(S0[φ]) =
∫

exp(W0[J0] − J0φ) dJ0. (29)

If we now use equation (28) for expW0 in equation (29) and the result is substituted in
equation (25), we obtain

Z[J ] = lim
h̄→0

∫
exp

(
h̄−1

∑
k

(00[φk] + J0φk)+ δS[φ] + (J − J0)φ

)
dJ0 dφ

∏
k

dφk. (30)

The integration overJ0 is immediate and yields a Dirac delta for the variableφ, which also
allows us to carry out this integration. Finally the following formula is obtained:

Z[J ] = lim
h̄→0

∫
exp

(
h̄−1

∑
k

(00[φk] + Jφk)+ δS[h̄−1
∑
k

φk]

)∏
k

dφk (31)

which expressesZ[J ] in terms of00 andδS. Except for the presence of replicas and explicit
h̄ factors, this formula has the same form as that in equation (25) and hence it yields the
same standard Feynman rules but with effective lines and vertices.

Consider any diagram of the theory ‘0Q + (0I + δS)’, as described by equation (31)
before taking the limit ¯h → 0. Let us now show that such a diagram carries precisely
a factor h̄L0, whereL0 is the number of unperturbed loops in the graph. LetP be the
total number of lines (both internal and external),E the number of legs,L the number
of loops andC the number of connected components of the graph. Furthermore, letV 0

n

and δVn denote the number ofn-point vertices of the types00 and δS respectively. After
these definitions, let us first count the number of ¯h factors coming from the explicit ¯h−1 in
equation (31). The arguments are standard [12, 3, 5]: from the Feynman rules it is clear
that each00 vertex carries a factor ¯h−1, each effective propagator carries a factor ¯h (since
it is the inverse of the quadratic part of the action), eachn-point δS vertex carries a factor
h̄−n and each leg a ¯h−1 factor (since they are associated with the external currentJ ). That
is, this number is

N0 = P −
∑
n>0

V 0
n − E −

∑
n>0

nδVn. (32)

Recall now the definition given above of the associated unperturbed diagram, obtained
after deleting all perturbation vertices, and letP0, E0, L0 andC0 denote the corresponding
quantities for such unperturbed graph. Note that the two definitions given for the quantity
L0 coincide. Due to its definition,P0 = P and alsoE0 = E +

∑
n>0 nδVn. This allows us

to rewriteN0 as

N0 = P0−
∑
n>0

V 0
n − E0. (33)

Since all quantities now refer to the unperturbed graph, use can be made of the well known
diagrammatic identityN0 = L0 − C0. Thus from the explicit ¯h, the graph picks up a
factor h̄L0−C0. Let us now turn to the implicit ¯h dependence coming from the number of
replicas. The replica method idea applies here directly: because all the replicas are identical,
summation over each different free replica label in the diagram yields precisely one ¯h factor.
From the Feynman rules corresponding to the theory of equation (31) it is clear that all lines
connected through the00 vertices are constrained to have the same replica label, whereas
the coupling throughδS vertices does not impose any conservation law of the replica label.
Thus, the number of different replica labels in the graph coincides withC0. In this argument
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is is essential to note that the external currentJi has not been replicated; it couples equally
to all the replicas. Combining this result with that previously obtained, we find that the
total h̄ dependence of a graph goes as ¯hL0. As a consequence, all graphs with unperturbed
loops are removed after taking the limit ¯h→ 0. This establishes the theorem.

Some remarks can be made at this point. First, it may be noted that some of the
manipulations carried out in the derivation of equation (31) were merely formal (beginning
by the very definition of the effective action, since there could be more than one extremum
in the Legendre transformation), however, they are completely sufficient at the perturbative
level. Indeed, order by order in perturbation theory, the unperturbed actionS0[φ] can be
expressed in terms of its effective action00[φ], hence the Green functions of the full theory
can be expressed perturbatively within the diagrams of the theory ‘0Q + (0I + δS)’. It
only remains to determine the weighting factor of each graph which by construction (i.e.
the order by order inversion) will be just a rational number. Second, it is clear that the
manipulations that lead to equation (31) can be carried out in the presence of fermions as
well, and the same conclusion applies. Third, note that in passing, it has been proven that
the effective action yields at tree level the same Green functions as the bare action at all
orders in the loop expansion, since this merely corresponds to setδS[φ] to zero. Finally,
equation (31) does not depend on any particular choice, such as fixing〈φi〉 = 0 to remove
tadpole subgraphs.
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